Mitochondrial DNA damage mediates hyperoxic dysmorphogenesis in rat fetal lung explants.
نویسندگان
چکیده
BACKGROUND Numerous studies in cultured cells indicate that damage to mitochondrial DNA (mtDNA) dictates cellular responses to oxidant stress, yet the consequences of mtDNA damage have not been studied directly in the preterm lung. OBJECTIVE We sought to determine whether hyperoxia-induced fetal lung dysmorphogenesis is linked to mtDNA damage and establish mtDNA repair as a potential therapeutic approach for treating lung dysplasia in the preterm neonate. METHODS Hyperoxia-induced mtDNA damage was assessed by quantitative alkaline gel electrophoresis in normoxic (3% O2) and hyperoxic (21% O2) fetal rat lung explants. A fusion protein construct targeting the DNA repair enzyme endonuclease III (Endo III) to the mitochondria was used to augment mtDNA repair. Fetal lung branching and surfactant protein C (SFPTC) were assessed in these tissues. RESULTS Hyperoxia induced mtDNA damage in lung explants and was accompanied by impaired branching morphogenesis and decreased SFPTC mRNA expression. Treatment of lung explants with Endo III fusion protein prevented hyperoxia-induced mtDNA damage and restored normal branching morphogenesis and SFPTC mRNA expression. CONCLUSION These findings support the concept that mtDNA governs cellular responses to oxidant stress in the fetal lung and suggest that modulation of mtDNA repair is a potential pharmacologic strategy in the prevention of hyperoxic lung injury.
منابع مشابه
Optical Imaging of Lipopolysaccharide-induced Oxidative Stress in Acute Lung Injury from Hyperoxia and Sepsis
Reactive oxygen species (ROS) have been implicated in the pathogenesis of many acute and chronic pulmonary disorders such as acute lung injury (ALI) in adults and bronchopulmonary dysplasia (BPD) in premature infants. Bacterial infection and oxygen toxicity, which result in pulmonary vascular endothelial injury, contribute to impaired vascular growth and alveolar simplification seen in the lung...
متن کاملCalcitonin gene-related peptide protects type II alveolar epithelial cells from hyperoxia-induced DNA damage and cell death
Hyperoxia therapy for acute lung injury (ALI) may unexpectedly lead to reactive oxygen species (ROS) production and cause additional ALI. Calcitonin gene-related peptide (CGRP) is a 37 amino acid neuropeptide that regulates inflammasome activation. However, the role of CGRP in DNA damage during hyperoxia is unclear. Therefore, the aim of the present study was to investigate the effects of CGRP ...
متن کاملHeparin binding VEGF isoforms attenuate hyperoxic embryonic lung growth retardation via a FLK1-neuropilin-1-PKC dependent pathway
BACKGROUND Previous work in our laboratory demonstrated that hyperoxia suppressed the expression of vascular endothelial growth factor (VEGF) by the embryonic lung, leading to increased epithelial cell apoptosis and failure of explant airway growth and branching that was rescued by the addition of Vegf165. The aims of this study were to determine protective pathways by which VEGF isoforms atten...
متن کاملTGF-beta signaling promotes survival and repair in rat alveolar epithelial type 2 cells during recovery after hyperoxic injury.
Hyperoxic rats treated with inosine during oxygen exposure have increased levels of active transforming growth factor (TGF)-beta in the bronchoalveolar lavage (BAL), yet alveolar epithelial type 2 cells (AEC2) isolated from these animals demonstrate less hyperoxia-induced DNA damage and increased expression of active Smad2. To determine whether TGF-beta1 signaling per se protected AEC2 against ...
متن کاملMitochondrial aldehyde dehydrogenase attenuates hyperoxia-induced cell death through activation of ERK/MAPK and PI3K-Akt pathways in lung epithelial cells.
Oxygen toxicity is one of the major risk factors in the development of the chronic lung disease or bronchopulmonary dysplasia in premature infants. Using proteomic analysis, we discovered that mitochondrial aldehyde dehydrogenase (mtALDH or ALDH2) was downregulated in neonatal rat lung after hyperoxic exposure. To study the role of mtALDH in hyperoxic lung injury, we overexpressed mtALDH in hum...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Neonatology
دوره 103 2 شماره
صفحات -
تاریخ انتشار 2013